A comprehensive neural simulation of slow-wave sleep and highly responsive wakefulness dynamics

Author:

Goldman Jennifer S.,Kusch Lionel,Aquilue David,Yalçınkaya Bahar Hazal,Depannemaecker Damien,Ancourt Kevin,Nghiem Trang-Anh E.,Jirsa Viktor,Destexhe Alain

Abstract

Hallmarks of neural dynamics during healthy human brain states span spatial scales from neuromodulators acting on microscopic ion channels to macroscopic changes in communication between brain regions. Developing a scale-integrated understanding of neural dynamics has therefore remained challenging. Here, we perform the integration across scales using mean-field modeling of Adaptive Exponential (AdEx) neurons, explicitly incorporating intrinsic properties of excitatory and inhibitory neurons. The model was run using The Virtual Brain (TVB) simulator, and is open-access in EBRAINS. We report that when AdEx mean-field neural populations are connected via structural tracts defined by the human connectome, macroscopic dynamics resembling human brain activity emerge. Importantly, the model can qualitatively and quantitatively account for properties of empirically observed spontaneous and stimulus-evoked dynamics in space, time, phase, and frequency domains. Large-scale properties of cortical dynamics are shown to emerge from both microscopic-scale adaptation that control transitions between wake-like to sleep-like activity, and the organization of the human structural connectome; together, they shape the spatial extent of synchrony and phase coherence across brain regions consistent with the propagation of sleep-like spontaneous traveling waves at intermediate scales. Remarkably, the model also reproduces brain-wide, enhanced responsiveness and capacity to encode information particularly during wake-like states, as quantified using the perturbational complexity index. The model was run using The Virtual Brain (TVB) simulator, and is open-access in EBRAINS. This approach not only provides a scale-integrated understanding of brain states and their underlying mechanisms, but also open access tools to investigate brain responsiveness, toward producing a more unified, formal understanding of experimental data from conscious and unconscious states, as well as their associated pathologies.

Funder

European Commission

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3