A multiscale model of striatum microcircuit dynamics

Author:

Tesler Federico1,Kozlov Alexander23,Grillner Sten3,Destexhe Alain1

Affiliation:

1. Paris-Saclay University, CNRS, Paris-Saclay Institute of Neuroscience (NeuroPSI)

2. Science for Life Laboratory, School of Electrical Engeneering and Computer Science, Royal Institute of Technology

3. Department of Neuroscience, Karolinska Institutet

Abstract

The striatum is the largest structure in the basal ganglia, and is known for its key role in functions such as learning and motor control. Studying these aspects requires investigating cellular/microcircuits mechanisms, in particular related to learning, and how these small-scale mechanisms affect large-scale behavior, and its interactions with other structures, such as the cerebral cortex. In this paper, we provide a multiscale approach to investigate these aspects. We first investigate striatum dynamics using spiking networks, and derive a mean-field model that captures these dynamics. We start with a brief introduction to the microcircuit of the striatum and we describe, step by step, the construction of a spiking network model, and its mean-field, for this area. The models include explicitly the different cell types and their intrinsic electrophysiological properties, and the synaptic receptors implicated in their recurrent interactions. Then we test the mean-field model by analyzing the response of the striatum network to the main brain rhythms observed experimentally, and compare this response to that predicted by the mean-field. We next study the effects of dopamine, a key neuromodulator in the basal ganglia, on striatal neurons. Integrating dopamine receptors in the spiking network model leads to emerging dynamics, which are also seen in the mean-field model. Finally, we introduce a basic implementation of reinforcement learning (one of the main known functions of the basal-ganglia) using the mean-field model of the striatum microcircuit. In conclusion, we provide a multiscale study of the striatum microcircuits and mean-field, that capture its response to periodic inputs, the effect of dopamine and can be used in reinforcement learning paradigms. Given that several mean-field models have been previously proposed for the cerebral cortex, the mean-field model presented here should be a key tool to investigate large-scale interactions between basal ganglia and cerebral cortex, for example in motor learning paradigms, and to integrate it in large scale and whole-brain simulations.

Publisher

eLife Sciences Publications, Ltd

Reference26 articles.

1. The role of the dorsal striatum in reward and decision-making;Journal of Neuroscience,2007

2. The striatum: where skills and habits meet;Cold Spring Harbor perspectives in biology,2015

3. Neural bases of goal-directed locomotion in vertebrates—an overview;Brain research reviews,2008

4. The microcircuits of striatum in silico;Proceedings of the National Academy of Sciences,2020

5. Striatal local circuitry: a new framework for lateral inhibition;Neuron,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3