Specificity and robustness of long-distance connections in weighted, interareal connectomes

Author:

Betzel Richard F.,Bassett Danielle S.ORCID

Abstract

Brain areas’ functional repertoires are shaped by their incoming and outgoing structural connections. In empirically measured networks, most connections are short, reflecting spatial and energetic constraints. Nonetheless, a small number of connections span long distances, consistent with the notion that the functionality of these connections must outweigh their cost. While the precise function of long-distance connections is unknown, the leading hypothesis is that they act to reduce the topological distance between brain areas and increase the efficiency of interareal communication. However, this hypothesis implies a nonspecificity of long-distance connections that we contend is unlikely. Instead, we propose that long-distance connections serve to diversify brain areas’ inputs and outputs, thereby promoting complex dynamics. Through analysis of five weighted interareal network datasets, we show that long-distance connections play only minor roles in reducing average interareal topological distance. In contrast, areas’ long-distance and short-range neighbors exhibit marked differences in their connectivity profiles, suggesting that long-distance connections enhance dissimilarity between areal inputs and outputs. Next, we show that—in isolation—areas’ long-distance connectivity profiles exhibit nonrandom levels of similarity, suggesting that the communication pathways formed by long connections exhibit redundancies that may serve to promote robustness. Finally, we use a linearization of Wilson–Cowan dynamics to simulate the covariance structure of neural activity and show that in the absence of long-distance connections a common measure of functional diversity decreases. Collectively, our findings suggest that long-distance connections are necessary for supporting diverse and complex brain dynamics.

Funder

National Science Foundation

HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3