Neural Processing of Counting in Evolved Spiking and McCulloch-Pitts Agents

Author:

Saggie-Wexler Keren1,Keinan Alon1,Ruppin Eytan2

Affiliation:

1. School of Computer Science, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, 69978, Israel

2. School of Computer Science, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, 69978, Israel and School of Medicine, Tel-Aviv University, Tel-Aviv, Israel

Abstract

This article investigates the evolution of autonomous agents that perform a memory-dependent counting task. Two types of neurocontrollers are evolved: networks of McCulloch-Pitts neurons, and spiking integrate-and-fire networks. The results demonstrate the superiority of the spiky model in evolutionary success and network simplicity. The combination of spiking dynamics with incremental evolution leads to the successful evolution of agents counting over very long periods. Analysis of the evolved networks unravels the counting mechanism and demonstrates how the spiking dynamics are utilized. Using new measures of spikiness we find that even in agents with spiking dynamics, these are usually truly utilized only when they are really needed, that is, in the evolved subnetwork responsible for counting.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Particle size estimation of industrial raw materials based on improved YOLOv7;International Conference on Remote Sensing, Mapping, and Image Processing (RSMIP 2024);2024-06-21

2. Evolving Memristive Neural Networks;Handbook of Memristor Networks;2019

3. Evolving Spiking Networks for Turbulence-Tolerant Quadrotor Control;Artificial Life 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems;2014-07-30

4. Evolving Spiking Networks with Variable Resistive Memories;Evolutionary Computation;2014-03

5. Evolving Memristive Neural Networks;Memristor Networks;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3