Localization of Function via Lesion Analysis

Author:

Aharonov Ranit1,Segev Lior2,Meilijson Isaac3,Ruppin Eytan2

Affiliation:

1. Center for Neural Computation, Hebrew University, Jerusalem, Israel,

2. School of Computer Sciences, Tel-Aviv University, Tel-Aviv, Israel,

3. School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel,

Abstract

This article presents a general approach for employing lesion analysis to address the fundamental challenge of localizing functions in a neural system. We describe functional contribution analysis (FCA), which assigns contribution values to the elements of the network such that the ability to predict the network's performance in response to multilesions is maximized. The approach is thoroughly examined on neurocontroller networks of evolved autonomous agents. The FCA portrays a stable set of neuronal contributions and accurate multilesion predictions that are significantly better than those obtained based on the classical single lesion approach. It is also used for a detailed synaptic analysis of the neurocontroller connectivity network, delineating its main functional backbone. The FCA provides a quantitative way of measuring how the network functions are localized and distributed among its elements. Our results question the adequacy of the classical single lesion analysis traditionally used in neuroscience and show that using lesioning experiments to decipher even simple neuronal systems requires a more rigorous multilesion analysis.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3