Emergence of Memory-Driven Command Neurons in Evolved Artificial Agents

Author:

Aharonov-Barki Ranit1,Beker Tuvik1,Ruppin Eytan2

Affiliation:

1. Center for Computational Neuroscience, The Hebrew University, Jerusalem, Israel

2. Department of Computer Science and Department of Physiology, School of Mathematical Sciences and School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel

Abstract

Using evolutionary simulations, we develop autonomous agents controlled by artificial neural networks (ANNs). In simple lifelike tasks of foraging and navigation, high performance levels are attained by agents equipped with fully recurrent ANN controllers. In a set of experiments sharing the same behavioral task but differing in the sensory input available to the agents, we find a common structure of a command neuron switching the dynamics of the network between radically different behavioral modes. When sensory position information is available, the command neuron reflects a map of the environment, acting as a location-dependent cell sensitive to the location and orientation of the agent. When such information is unavailable, the command neuron's activity is based on a spontaneously evolving short-term memory mechanism, which underlies its apparent place-sensitive activity. A two-parameter stochastic model for this memory mechanism is proposed. We show that the parameter values emerging from the evolutionary simulations are near optimal; evolution takes advantage of seemingly harmful features of the environment to maximize the agent's foraging efficiency. The accessibility of evolved ANNs for a detailed inspection, together with the resemblance of some of the results to known findings from neurobiology, places evolved ANNs as an excellent candidate model for the study of structure and function relationship in complex nervous systems.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolutionary Supervised Machine Learning;Handbook of Evolutionary Machine Learning;2023-11-02

2. Evolving Neural Networks;Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion;2016-07-20

3. Evolving Neural Networks;Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation;2015-07-11

4. Evolving neural networks;Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation;2014-07-12

5. Evolving neural networks;Proceedings of the 15th annual conference companion on Genetic and evolutionary computation;2013-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3