Relaxin Peptide Hormones Are Protective During the Early Stages of Ischemic Stroke in Male Rats

Author:

Bergeron Lindsay H.1,Willcox Jordan M.1,Alibhai Faisal J.1,Connell Barry J.2,Saleh Tarek M.2,Wilson Brian C.3,Summerlee Alastair J. S.1

Affiliation:

1. Department of Biomedical Sciences (L.H.B., J.M.W., F.J.A., A.J.S.S.), Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G2W1

2. Department of Biomedical Sciences (B.J.C., T.M.S.), Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada C1A4P3

3. Department of Biology (B.C.W.), Acadia University, Wolfville, Nova Scotia, Canada B4P2R6

Abstract

The pregnancy hormone relaxin protects tissue from ischemic damage. The ability of relaxin-3, a relaxin paralog, to do so has not been explored. The cerebral expression levels of these peptides and their receptors make them logical targets for study in the ischemic brain. We assessed relaxin peptide-mediated protection, relative relaxin family peptide receptor (RXFP) involvement, and protective mechanisms. Sprague-Dawley rats receiving permanent (pMCAO) or transient middle cerebral artery occlusions (tMCAO) were treated with relaxin peptides, and brains were collected for infarct analysis. Activation of the endothelial nitric oxide synthase pathway was evaluated as a potential protective mechanism. Primary cortical rat astrocytes were exposed to oxygen glucose deprivation and treated with relaxin peptides, and viability was examined. Receptor involvement was explored using RXFP3 antagonist or agonist treatment and real-time PCR. Relaxin and relaxin-3 reduced infarct size after pMCAO. Both peptides activated endothelial nitric oxide synthase. Because relaxin-3 has not previously been associated with this pathway and displays promiscuous RXFP binding, we explored the receptor contribution. Expression of rxfp1 was greater than that of rxfp3 in rat brain, although peptide binding at either receptor resulted in similar overall protection after pMCAO. Only RXFP3 activation reduced infarct size after tMCAO. In astrocytes, rxfp3 gene expression was greater than that of rxfp1. Selective activation of RXFP3 maintained astrocyte viability after oxygen glucose deprivation. Relaxin peptides are protective during the early stages of ischemic stroke. Differential responses among treatments and models suggest that RXFP1 and RXFP3 initiate different protective mechanisms. This preliminary work is a pivotal first step in identifying the clinical implications of relaxin peptides in ischemic stroke.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference46 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3