Development of an ANN-Based Urban Flood Alert Criteria Prediction Model and the Impact of Training Data Augmentation

Author:

Kang Hoseon,Cho Jaewoong,Lee Hanseung,Hwang Jeonggeun,Moon Hyejin

Abstract

Urban flooding occurs during heavy rains of short duration, so quick and accurate warnings of the danger of inundation are required. Previous research proposed methods to estimate statistics-based urban flood alert criteria based on flood damage records and rainfall data, and developed a Neuro-Fuzzy model for predicting appropriate flood alert criteria. A variety of artificial intelligence algorithms have been applied to the prediction of the urban flood alert criteria, and their usage and predictive precision have been enhanced with the recent development of artificial intelligence. Therefore, this study predicted flood alert criteria and analyzed the effect of applying the technique to augmentation training data using the Artificial Neural Network (ANN) algorithm. The predictive performance of the ANN model was RMSE 3.39-9.80 mm, and the model performance with the extension of training data was RMSE 1.08-6.88 mm, indicating that performance was improved by 29.8-82.6%.

Publisher

Korean Society of Hazard Mitigation

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3