Author:
Kang Hoseon,Cho Jaewoong,Lee Hanseung,Hwang Jeonggeun,Moon Hyejin
Abstract
Urban flooding occurs during heavy rains of short duration, so quick and accurate warnings of the danger of inundation are required. Previous research proposed methods to estimate statistics-based urban flood alert criteria based on flood damage records and rainfall data, and developed a Neuro-Fuzzy model for predicting appropriate flood alert criteria. A variety of artificial intelligence algorithms have been applied to the prediction of the urban flood alert criteria, and their usage and predictive precision have been enhanced with the recent development of artificial intelligence. Therefore, this study predicted flood alert criteria and analyzed the effect of applying the technique to augmentation training data using the Artificial Neural Network (ANN) algorithm. The predictive performance of the ANN model was RMSE 3.39-9.80 mm, and the model performance with the extension of training data was RMSE 1.08-6.88 mm, indicating that performance was improved by 29.8-82.6%.
Publisher
Korean Society of Hazard Mitigation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献