Improvement of Urban Flood Alert Criteria Prediction Model based on Neuro-Fuzzy Initial Function and Training Data

Author:

Kang Hoseon,Cho Jaewoong,Lee Hanseung,Hwang Jeonggeun

Abstract

In Korean metropolitan areas, the high density of residential and commercial buildings, highly impervious surfaces, and steep slopes contribute to floods that can occur within a short duration of heavy rainfall. To prepare for this, advance warning measures based on accurate flood alert criteria are needed. In our previous study, we demonstrated the applications of a Neuro-Fuzzy model that considersthe characteristics of the basin to predict flood alert criteria in areas with no damage. However, as the number of learning materials are low, at 27, the evaluation and verification of the model has not been sufficiently accomplished, and its application is limited. Therefore, in this study, we propose an improved model based on the initializing function of the Neuro-Fuzzy algorithm, the construction of training data, and preprocessing. Compared to the existing model, the improved model reduced the average error by 48.1%~65.4% and the RMSE by 50.7%~60.1%. The new model, when applied to actual floods, showed an improvement of 0.7%~19.1% in accuracy.

Publisher

Korean Society of Hazard Mitigation

Subject

General Medicine

Reference8 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3