Estimation of Threshold Rainfall in Ungauged Areas Using Machine Learning

Author:

Chu Kyung-SuORCID,Oh Cheong-HyeonORCID,Choi Jung-RyelORCID,Kim Byung-SikORCID

Abstract

In recent years, Korea has seen abnormal changes in precipitation and temperature driven by climate change. These changes highlight the increased risks of climate disasters and rainfall damage. Even with weather forecasts providing quantitative rainfall estimates, it is still difficult to estimate the damage caused by rainfall. Damaged by rainfalls differently for inch watershed, but there is a limit to the analysis coherent to the characteristic factors of the inch watershed. It is time-consuming to analyze rainfall and runoff using hydrological models every time it rains. Therefore, in fact, many analyses rely on simple rainfall data, and in coastal basins, hydrological analysis and physical model analysis are often difficult. To address the issue in this study, watershed characteristic factors such as drainage area (A), mean drainage elevation (H), mean drainage slope (S), drainage density (D), runoff curve number (CN), watershed parameter (Lp), and form factor (Rs) etc. and hydrologic factors were collected and calculated as independent variables, and the threshold rainfall calculated by the Ministry of Land, Infrastructure and Transport (MOLIT) was calculated as a dependent variable and used in the machine learning technique. As for machine learning techniques, this study uses the support vector machine method (SVM), the random forest method, and eXtreme Gradient Boosting (XGBoost). As a result, XGBoost showed good results in performance evaluation with RMSE 20, MAE 14, and RMSLE 0.28, and the threshold rainfall of the ungauged watersheds was calculated using the XGBoost technique and verified through past rainfall events and damage cases. As a result of the verification, it was confirmed that there were cases of damage in the basin where the threshold rainfall was low. If the application results of this study are used, it is judged that it is possible to accurately predict flooding-induced rainfall by calculating the threshold rainfall in the ungauged watersheds where rainfall-outflow analysis is difficult, and through this result, it is possible to prepare for areas vulnerable to flooding.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference42 articles.

1. Estimating Design Floods at Ungauged Watersheds in South Korea Using Machine Learning Models

2. Guideline on Multi-Hazard Impact-Based Forecast and Warning System,2015

3. Impact Forecast Vision and Direction;Jeong;Meteorol. Technol. Policy,2016

4. Development and Activation of Impact Forecasting Servicehttps://www.kma.go.kr/down/t_policy/t_policy_201706.pdf

5. Weather Disaster Impact Forecast;Lee;KISTEP Technol. Trend Brief,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3