Affiliation:
1. Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan
2. Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City 25137, Taiwan
3. Department of Computer Science and Information Engineering, Tamkang University,
New Taipei City 25137, Taiwan
Abstract
The sustainable management of water cycles is crucial in the context of climate change and global warming. It involves managing global, regional, and local water cycles—as well as urban, agricultural, and industrial water cycles—to conserve water resources and their relationships with energy, food, microclimates, biodiversity, ecosystem functioning, and anthropogenic activities. Hydrological modeling is indispensable for achieving this goal, as it is essential for water resources management and mitigation of natural disasters. In recent decades, the application of artificial intelligence (AI) techniques in hydrology and water resources management has made notable advances. In the face of hydro-geo-meteorological uncertainty, AI approaches have proven to be powerful tools for accurately modeling complex, non-linear hydrological processes and effectively utilizing various digital and imaging data sources, such as ground gauges, remote sensing tools, and in situ Internet of Things (IoTs). The thirteen research papers published in this Special Issue make significant contributions to long- and short-term hydrological modeling and water resources management under changing environments using AI techniques coupled with various analytics tools. These contributions, which cover hydrological forecasting, microclimate control, and climate adaptation, can promote hydrology research and direct policy making toward sustainable and integrated water resources management.
Funder
National Science and Technology Council, Taiwan
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献