An ultra high‐throughput, massively multiplexable, single‐cell RNA‐seq platform in yeasts

Author:

Brettner Leandra1,Eder Rachel12,Schmidlin Kara12,Geiler‐Samerotte Kerry12

Affiliation:

1. Biodesign Institute Center for Mechanisms of Evolution Arizona State University Tempe Arizona USA

2. School of Life Sciences Arizona State University Tempe Arizona USA

Abstract

AbstractYeasts are naturally diverse, genetically tractable, and easy to grow such that researchers can investigate any number of genotypes, environments, or interactions thereof. However, studies of yeast transcriptomes have been limited by the processing capabilities of traditional RNA sequencing techniques. Here we optimize a powerful, high‐throughput single‐cell RNA sequencing (scRNAseq) platform, SPLiT‐seq (Split Pool Ligation‐based Transcriptome sequencing), for yeasts and apply it to 43,388 cells of multiple species and ploidies. This platform utilizes a combinatorial barcoding strategy to enable massively parallel RNA sequencing of hundreds of yeast genotypes or growth conditions at once. This method can be applied to most species or strains of yeast for a fraction of the cost of traditional scRNAseq approaches. Thus, our technology permits researchers to leverage “the awesome power of yeast” by allowing us to survey the transcriptome of hundreds of strains and environments in a short period of time and with no specialized equipment. The key to this method is that sequential barcodes are probabilistically appended to cDNA copies of RNA while the molecules remain trapped inside of each cell. Thus, the transcriptome of each cell is labeled with a unique combination of barcodes. Since SPLiT‐seq uses the cell membrane as a container for this reaction, many cells can be processed together without the need to physically isolate them from one another in separate wells or droplets. Further, the first barcode in the sequence can be chosen intentionally to identify samples from different environments or genetic backgrounds, enabling multiplexing of hundreds of unique perturbations in a single experiment. In addition to greater multiplexing capabilities, our method also facilitates a deeper investigation of biological heterogeneity, given its single‐cell nature. For example, in the data presented here, we detect transcriptionally distinct cell states related to cell cycle, ploidy, metabolic strategies, and so forth, all within clonal yeast populations grown in the same environment. Hence, our technology has two obvious and impactful applications for yeast research: the first is the general study of transcriptional phenotypes across many strains and environments, and the second is investigating cell‐to‐cell heterogeneity across the entire transcriptome.

Funder

National Institutes of Health

National Science Foundation

Alfred P. Sloan Foundation

Publisher

Wiley

Subject

Genetics,Applied Microbiology and Biotechnology,Biochemistry,Bioengineering,Biotechnology

Reference45 articles.

1. 10X Genomics single‐cell libraries. (2024). | Cornell Institute of Biotechnology | Cornell University.https://www.biotech.cornell.edu/core-facilities-brc/services/10x-genomics-single-cell-libraries

2. 10X Pricing. (2024).https://www.kumc.edu/research/genome-sequencing-facility/services/10x-services/10x-pricing.html

3. Flow cytometric detection of yeast by in situ hybridization with a fluorescent ribosomal RNA probe

4. Comprehensive single-cell transcriptional profiling of a multicellular organism

5. Saccharomyces Genome Database: the genomics resource of budding yeast

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3