Single-cell heterogeneity in ribosome content and the consequences for the growth laws

Author:

Brettner Leandra,Geiler-Samerotte Kerry

Abstract

ABSTRACTPrevious work has suggested that the ribosome content of a cell is optimized to maximize growth given the nutrient availability. The resulting correlation between ribosome number and growth rate appears to be independent of the rate limiting nutrient and has been reported in many organisms. The robustness and universality of this observation has given it the classification of a “growth law.” These laws have had powerful impacts on many biological disciplines. They have fueled predictions about how organisms evolve to maximize reproduction, and informed models about how cells regulate growth. Due to methodological limitations, this growth law has rarely been studied at the level of individual cells. Whilepopulationsof fast-growing cells tend to have more ribosomes thanpopulationsof slow-growing cells, it is unclear if individual cells tightly regulate their ribosome content to match their environment. Here, we use recent ground-breaking single-cell RNA sequencing techniques to study this growth law at the single-cell level in two different microbes,S. cerevisiae(a single-celled yeast and eukaryote) andB. subtilis(a bacterium and prokaryote). In both species, we find enormous variation in the ribosomal content of single cells that is not predictive of growth rate. Fast-growing populations include cells showing transcriptional signatures of slow growth and stress, as do cells with the highest ribosome content we survey. Broadening our focus to the levels of non-ribosomal transcripts reveals subpopulations of cells in unique transcriptional states suggestive of divergent growth strategies. These results suggest that single-cell ribosome levels are not finely tuned to match population growth rates or nutrient availability, at least not in a way that can be captured by a unifying law that applies to all cell types. Overall, this work encourages the expansion of these “laws” and other models that predict how growth rates are regulated or how they evolve to consider single-cell heterogeneity.

Publisher

Cold Spring Harbor Laboratory

Reference70 articles.

1. Lynch, M. Evolutionary Scaling Laws in Cell Biology. in Evolutionary Cell Biology: The Origins of Cellular Architecture (2022).

2. Lynch, M. Cell Growth and Division. in Evolutionary Cell Biology: The Origins of Cellular Architecture (2023).

3. Golan, O. et al. Models of growing cells. in Economic Principles in Cell Biology 117–134 (2024).

4. Kremling, A. , Liebermeister, W. , Noor, E. & Wortel, M. Metabolism in states of maximal enzyme efficiency. in Economic Principles in Cell Biology 107–116 (2024).

5. Dependency on Medium and Temperature of Cell Size and Chemical Composition during Balanced Growth of Salmonella typhimurium

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3