Data‐driven linear complexity low‐rank approximation of general kernel matrices: A geometric approach

Author:

Cai Difeng1,Chow Edmond2,Xi Yuanzhe1ORCID

Affiliation:

1. Department of Mathematics Emory University Atlanta Georgia USA

2. School of Computational Science and Engineering Georgia Institute of Technology Atlanta Georgia USA

Abstract

SummaryA general, rectangular kernel matrix may be defined as where is a kernel function and where and are two sets of points. In this paper, we seek a low‐rank approximation to a kernel matrix where the sets of points and are large and are arbitrarily distributed, such as away from each other, “intermingled”, identical, and so forth. Such rectangular kernel matrices may arise, for example, in Gaussian process regression where corresponds to the training data and corresponds to the test data. In this case, the points are often high‐dimensional. Since the point sets are large, we must exploit the fact that the matrix arises from a kernel function, and avoid forming the matrix, and thus ruling out most algebraic techniques. In particular, we seek methods that can scale linearly or nearly linearly with respect to the size of data for a fixed approximation rank. The main idea in this paper is to geometrically select appropriate subsets of points to construct a low rank approximation. An analysis in this paper guides how this selection should be performed.

Publisher

Wiley

Subject

Applied Mathematics,Algebra and Number Theory

Reference60 articles.

1. Applied mathematical sciences;Kress R,2013

2. Boundary Integral Equations

3. The numerical solution of the eigenvalue problem for compact integral operators;Atkinson KE;Trans Am Math Soc,1967

4. Rapid solution of integral equations of classical potential theory

5. Eigenvalue Problems for Exponential-Type Kernels

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Adaptive Factorized Nyström Preconditioner for Regularized Kernel Matrices;SIAM Journal on Scientific Computing;2024-07-17

2. Randomized low‐rank approximation of parameter‐dependent matrices;Numerical Linear Algebra with Applications;2024-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3