Eigenvalue Problems for Exponential-Type Kernels

Author:

Cai Difeng1ORCID,Vassilevski Panayot S.2

Affiliation:

1. Department of Mathematics , Purdue University , West Lafayette , IN 47907-2067 , USA

2. Fariborz Maseeh Department of Mathematics and Statistics , Portland State University , Portland , OR 97207; and Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94550 , USA

Abstract

Abstract We study approximations of eigenvalue problems for integral operators associated with kernel functions of exponential type. We show convergence rate | λ k - λ k , h | C k h 2 {\lvert\lambda_{k}-\lambda_{k,h}\rvert\leq C_{k}h^{2}} in the case of lowest order approximation for both Galerkin and Nyström methods, where h is the mesh size, λ k {\lambda_{k}} and λ k , h {\lambda_{k,h}} are the exact and approximate kth largest eigenvalues, respectively. We prove that the two methods are numerically equivalent in the sense that | λ k , h ( G ) - λ k , h ( N ) | C h 2 {|\lambda^{(G)}_{k,h}-\lambda^{(N)}_{k,h}|\leq Ch^{2}} , where λ k , h ( G ) {\lambda^{(G)}_{k,h}} and λ k , h ( N ) {\lambda^{(N)}_{k,h}} denote the kth largest eigenvalues computed by Galerkin and Nyström methods, respectively, and C is a eigenvalue independent constant. The theoretical results are accompanied by a series of numerical experiments.

Funder

Lawrence Livermore National Laboratory

National Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-Driven Construction of Hierarchical Matrices With Nested Bases;SIAM Journal on Scientific Computing;2023-07-13

2. Data‐driven linear complexity low‐rank approximation of general kernel matrices: A geometric approach;Numerical Linear Algebra with Applications;2023-07-04

3. Single-pass randomized QLP decomposition for low-rank approximation;Calcolo;2022-11

4. On Finite-Time Mutual Information;2022 IEEE International Symposium on Information Theory (ISIT);2022-06-26

5. Fast Deterministic Approximation of Symmetric Indefinite Kernel Matrices with High Dimensional Datasets;SIAM Journal on Matrix Analysis and Applications;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3