Randomized low‐rank approximation of parameter‐dependent matrices

Author:

Kressner Daniel1ORCID,Lam Hei Yin1

Affiliation:

1. Institute of Mathematics EPF Lausanne Lausanne Switzerland

Abstract

AbstractThis work considers the low‐rank approximation of a matrix depending on a parameter in a compact set . Application areas that give rise to such problems include computational statistics and dynamical systems. Randomized algorithms are an increasingly popular approach for performing low‐rank approximation and they usually proceed by multiplying the matrix with random dimension reduction matrices (DRMs). Applying such algorithms directly to would involve different, independent DRMs for every , which is not only expensive but also leads to inherently non‐smooth approximations. In this work, we propose to use constant DRMs, that is, is multiplied with the same DRM for every . The resulting parameter‐dependent extensions of two popular randomized algorithms, the randomized singular value decomposition and the generalized Nyström method, are computationally attractive, especially when admits an affine linear decomposition with respect to . We perform a probabilistic analysis for both algorithms, deriving bounds on the expected value as well as failure probabilities for the approximation error when using Gaussian random DRMs. Both, the theoretical results and numerical experiments, show that the use of constant DRMs does not impair their effectiveness; our methods reliably return quasi‐best low‐rank approximations.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3