Signal‐to‐noise errors in free‐running atmospheric simulations and their dependence on model resolution

Author:

Cottrell Francesca M.1ORCID,Screen James A.1ORCID,Scaife Adam A.12ORCID

Affiliation:

1. Department of Mathematics and Statistics University of Exeter Exeter UK

2. Met Office Hadley Centre Exeter UK

Abstract

AbstractEnsemble forecasts have been shown to better predict observed Atlantic climate variability than that of their own ensemble members. This phenomenon—termed the signal‐to‐noise paradox—is found to be widespread across models, timescales, and climate variables, and has wide implications. The signal‐to‐noise paradox can be interpreted as forecasts underestimating the amplitude of predictable signals on seasonal‐to‐decadal timescales. The cause of this remains unknown. Here, we examine sea level pressure variability from a very large multi‐model ensemble of uninitialized atmosphere‐only simulations, focusing on boreal winter. To assess signal‐to‐noise errors, the ratio of predictable components (RPC) is examined globally, as well as for regional climate indices: the North Atlantic Oscillation, Arctic Oscillation, Southern Annular Mode, and an Arctic index. Our analyses reveal significant correlations between the multi‐model ensemble‐mean and observations over large portions of the globe, particularly the tropics, North Atlantic, and North Pacific. However, RPC values greater than one are apparent over many extratropical regions and in all four climate indices. Higher‐resolution models produce greater observation‐model correlations and greater RPC values than lower‐resolution models in all four climate indices. We find that signal‐to‐noise errors emerge more clearly at higher resolution, but the amplitudes of predictable signals do not increase with resolution, at least across the range of resolutions considered here. Our results suggest that free‐running atmospheric models underestimate predictable signals in the absence of sea surface temperature biases, implying that signal‐to‐noise errors originate in the atmosphere or in ocean–atmosphere coupling.

Funder

Natural Environment Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hypothesis on ergodicity and the signal‐to‐noise paradox;Atmospheric Science Letters;2024-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3