A hypothesis on ergodicity and the signal‐to‐noise paradox

Author:

Brener Daniel J.1ORCID

Affiliation:

1. The Higgs Centre for Theoretical Physics The University of Edinburgh Edinburgh UK

Abstract

AbstractThis letter raises the possibility that ergodicity concerns might have some bearing on the signal‐to‐noise paradox. This is explored by applying the ergodic theorem to the theory behind ensemble weather forecasting and the ensemble mean. Using the ensemble mean as our best forecast of observations amounts to interpreting it as the most likely phase‐space trajectory, which relies on the ergodic theorem. This can fail for ensemble forecasting systems if members are not perfectly exchangeable with each other, the averaging window is too short and/or there are too few members. We argue these failures can occur in cases such as the winter North Atlantic Oscillation (NAO) forecasts due to intransitivity or regime behaviour for regions such as the North Atlantic and Arctic. This behaviour, where different ensemble members may become stuck in different relatively persistent flow states (intransitivity) or multi‐modality (regime behaviour), can in certain situations break the ergodic theorem. The problem of non‐ergodic systems and models in the case of weather forecasting is discussed, as are potential mitigation methods and metrics for ergodicity in ensemble systems.

Funder

Science and Technology Facilities Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3