Examining key capitals contributing to students' science‐related career expectations and their relationship patterns: A machine learning approach

Author:

Tan Lihua1ORCID,Chen Fu1ORCID,Wei Bing1ORCID

Affiliation:

1. Faculty of Education University of Macau Macau China

Abstract

AbstractThrough the lens of science capital, this research aims to detect the key factors and their main effects in identifying students with science‐related career expectations. A machine learning approach (i.e., random forest) was employed to analyze a dataset of 519,334 15‐year‐old students from the Programme for International Student Assessment (PISA) 2015. The global analysis identified 25 key factors out of 88 contextual features: (1) for “how you think,” making students feel science is relevant, enjoyable, and interesting is relatively more crucial than being ambitious and confident; (2) for “what science you know,” students' science and math literacy, epistemological beliefs, and awareness of environmental matters were the key factors; (3) for “who you know,” parents valuing science, expecting their children to enter science, and providing emotional support were as similar as or even more important than their economic, social, and cultural status (ESCS)‐related constructs, while teachers fairness ranked the top among all teaching‐related features; and (4) for “what you do,” appropriate science learning time, engagement in science activities, and ICT use for schoolwork were key factors. These findings indicate a relatively optimistic situation, as the most key capitals were malleable for educators. Accumulated local effect plots further discriminated how these key capitals related to students' career expectations in four distinct ways: “increasing,” “S‐shaped,” “inverted‐U‐shaped,” and “decreasing,” shedding light on how we could optimize key resources to enhance aspirations. The comparison between global and Hong Kong analyses suggests the key factors identified by the global model were generally effective but not necessarily essential for a specific region. The cross‐cultural generalizability or prevalence of capitals might vary by their forms.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3