Improving the effectiveness of personalized recommendations through attributional cues

Author:

Weidig Jakob1ORCID,Kuehnl Christina1

Affiliation:

1. Department VI—Marketing Department, School of Management University of Stuttgart Stuttgart Germany

Abstract

AbstractFirms often employ personalized recommendations to help customers make purchase decisions. To improve the effectiveness of their personalized recommendations, some firms use cues to offer transparency on how they collect and use data to derive recommendations. We draw on attribution theory to propose an additional mechanism to improve the effectiveness of personalized recommendations with cues. Attributional cues, which refer to the underlying data (i.e., customers' own data vs. similar customers' data) used for personalized recommendations, aim to increase customers' self‐attribution of personalized recommendations. Specifically, in three experimental studies, we show that attributional cues increase customers' self‐attribution of personalized recommendations, leading to higher trust in and lower reactance to personalized recommendations. The accuracy and valence of the personalized recommendations moderate this attributional effect. As a result, employing attributional cues can be an essential and affordable tool for firms to increase the effectiveness of their personalized recommendations.

Funder

Dr. Werner Jackstädt-Stiftung

Publisher

Wiley

Subject

Marketing,Applied Psychology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3