Affiliation:
1. Department of Chemistry, School of Humanities and Basic Sciences Veer Surendra Sai University of Technology Burla Sambalpur Odisha 768018 India
2. School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
Abstract
AbstractLayered double hydroxide (LDH) is a special category of layered nanomaterials that has attracted keen interest towards fabrication of hybrid materials for efficient packaging application. In the present study, starch‐co‐poly(methyl methacrylate) (St‐co‐PMMA) copolymeric matrix is sandwiched within Mg‐Al layered double hydroxides (Mg‐Al LDH) along with silver nanoparticles (AgNPs) via surfactant free in situ polymerization of MMA. The imprintment of LDH and AgNPs within the copolymeric matrix of starch and their interactions are analyzed by the Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD) study. The morphological analysis is carried out by field emission scanning electron microscopy (FESEM), which indicates the reduction of voids by the partial intercalation and exfoliation of LDH layers. This dispersive effect offered by the combination of LDH and AgNPs not only results in an eight‐fold increase in oxygen barrier properties, but also enhances the chemical resistance attributes of the St‐co‐PMMA@Ag/(Mg‐Al)LDH nanocomposite films (NFs) with increase in LDH loading. Antibacterial activity is rendered by the presence of AgNPs and is further accentuated by increasing the concentration of LDH in the nanocomposite films. This significant elevation in thermal stability, chemical resistance, barrier properties, and bactericidal nature makes the material potential for packaging applications.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献