Nano Silver Imprinted Starch‐co‐Polymethylmethacrylate Sandwiched Layered Double Hydroxide Nanocomposite Films for Packaging Application

Author:

Nazrul Shaikh1,Biswal Anuradha1,Sahu Krishna Manjari1,Sana Siva Sankar2,Swain Sarat K.1ORCID

Affiliation:

1. Department of Chemistry, School of Humanities and Basic Sciences Veer Surendra Sai University of Technology Burla Sambalpur Odisha 768018 India

2. School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea

Abstract

AbstractLayered double hydroxide (LDH) is a special category of layered nanomaterials that has attracted keen interest towards fabrication of hybrid materials for efficient packaging application. In the present study, starch‐co‐poly(methyl methacrylate) (St‐co‐PMMA) copolymeric matrix is sandwiched within Mg‐Al layered double hydroxides (Mg‐Al LDH) along with silver nanoparticles (AgNPs) via surfactant free in situ polymerization of MMA. The imprintment of LDH and AgNPs within the copolymeric matrix of starch and their interactions are analyzed by the Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD) study. The morphological analysis is carried out by field emission scanning electron microscopy (FESEM), which indicates the reduction of voids by the partial intercalation and exfoliation of LDH layers. This dispersive effect offered by the combination of LDH and AgNPs not only results in an eight‐fold increase in oxygen barrier properties, but also enhances the chemical resistance attributes of the St‐co‐PMMA@Ag/(Mg‐Al)LDH nanocomposite films (NFs) with increase in LDH loading. Antibacterial activity is rendered by the presence of AgNPs and is further accentuated by increasing the concentration of LDH in the nanocomposite films. This significant elevation in thermal stability, chemical resistance, barrier properties, and bactericidal nature makes the material potential for packaging applications.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3