Spatial and temporal resolution of metabolic dysregulation in the Sugen hypoxia model of pulmonary hypertension

Author:

Simpson Catherine E.1ORCID,Ambade Anjira S.1,Harlan Robert2,Roux Aurelie2,Graham David2,Klauer Neal1,Tuhy Tijana1ORCID,Kolb Todd M.1,Suresh Karthik1ORCID,Hassoun Paul M.1,Damico Rachel L.1

Affiliation:

1. Johns Hopkins University Division of Pulmonary and Critical Care Medicine Baltimore Maryland USA

2. Johns Hopkins All Children's Hospital Molecular Determinants Core St. Petersburg Florida USA

Abstract

AbstractAlthough PAH is partially attributed to disordered metabolism, previous human studies have mostly examined circulating metabolites at a single time point, potentially overlooking crucial disease biology. Current knowledge gaps include an understanding of temporal changes that occur within and across relevant tissues, and whether observed metabolic changes might contribute to disease pathobiology. We utilized targeted tissue metabolomics in the Sugen hypoxia (SuHx) rodent model to investigate tissue‐specific metabolic relationships with pulmonary hypertensive features over time using regression modeling and time‐series analysis. Our hypotheses were that some metabolic changes would precede phenotypic changes, and that examining metabolic interactions across heart, lung, and liver tissues would yield insight into interconnected metabolic mechanisms. To support the relevance of our findings, we sought to establish links between SuHx tissue metabolomics and human PAH ‐omics data using bioinformatic predictions. Metabolic differences between and within tissue types were evident by Day 7 postinduction, demonstrating distinct tissue‐specific metabolism in experimental pulmonary hypertension. Various metabolites demonstrated significant tissue‐specific associations with hemodynamics and RV remodeling. Individual metabolite profiles were dynamic, and some metabolic shifts temporally preceded the emergence of overt pulmonary hypertension and RV remodeling. Metabolic interactions were observed such that abundance of several liver metabolites modulated lung and RV metabolite‐phenotype relationships. Taken all together, regression analyses, pathway analyses and time‐series analyses implicated aspartate and glutamate signaling and transport, glycine homeostasis, lung nucleotide abundance, and oxidative stress as relevant to early PAH pathobiology. These findings offer valuable insights into potential targets for early intervention in PAH.

Funder

Pulmonary Hypertension Association

National Heart, Lung, and Blood Institute

Publisher

Wiley

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3