Lignin‐derived hard carbon anode with a robust solid electrolyte interphase for boosted sodium storage performance

Author:

Zheng Jingqiang1,Wu Yulun1,Guan Chaohong2,Wang Danjun1,Lai Yanqing1,Li Jie1,Yang Fuhua3,Li Simin1,Zhang Zhian1ORCID

Affiliation:

1. Hunan Provincial Key Laboratory of Nonferrous Value‐Added Metallurgy, National Energy Metal Resources and New Materials Key Laboratory, School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials Central South University Changsha China

2. University of Michigan‐Shanghai Jiao Tong University Joint Institute Shanghai Jiao Tong University Shanghai China

3. Helmholtz Institute Ulm Ulm Germany

Abstract

AbstractHard carbon is regarded as a promising anode candidate for sodium‐ion batteries due to its low cost, relatively low working voltage, and satisfactory specific capacity. However, it still remains a challenge to obtain a high‐performance hard carbon anode from cost‐effective carbon sources. In addition, the solid electrolyte interphase (SEI) is subjected to continuous rupture during battery cycling, leading to fast capacity decay. Herein, a lignin‐based hard carbon with robust SEI is developed to address these issues, effectively killing two birds with one stone. An innovative gas‐phase removal‐assisted aqueous washing strategy is developed to remove excessive sodium in the precursor to upcycle industrial lignin into high‐value hard carbon, which demonstrated an ultrahigh sodium storage capacity of 359 mAh g−1. It is found that the residual sodium components from lignin on hard carbon act as active sites that controllably regulate the composition and morphology of SEI and guide homogeneous SEI growth by a near‐shore aggregation mechanism to form thin, dense, and organic‐rich SEI. Benefiting from these merits, the as‐developed SEI shows fast Na+ transfer at the interphases and enhanced structural stability, thus preventing SEI rupture and reformation, and ultimately leading to a comprehensive improvement in sodium storage performance.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PVC-Derived Amorphous Carbon Materials for Sodium Storage Anodes;Journal of Electronic Materials;2024-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3