Rationally Designing Closed Pore Structure by Carbon Dots to Evoke Sodium Storage Sites of Hard Carbon in Low‐Potential Region

Author:

Huang Yujie1,Zhong Xue1,Hu Xinyu1,Li Yujin1,Wang Kai1,Tu Hanyu1,Deng Wentao1,Zou Guoqiang1,Hou Hongshuai1ORCID,Ji Xiaobo1

Affiliation:

1. State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China

Abstract

AbstractHard carbon (HC) is widely regarded as the most promising anode material for sodium‐ion batteries (SIBs). For improving the sodium storage capacity of HC anode, current research primarily focuses on the high‐voltage slope region. Actually, increasing the storage capability in the low‐voltage plateau region is more important for enhancing the energy density of full cells. Therefore, in this study, HC anode with rich closed pore structure is designed and constructed with the help of carbon dots (CDs), and it is demonstrated that the presence of closed pore structure can provide more sodium storage sites in the plateau region, resulting in an obvious increase of sodium storage capacity. Moreover, the pore‐filling and intercalation mechanism for sodium storage in plateau region is revealed by in situ Raman spectroscopy and ex situ transmission electron microscopy (TEM). It is worth noting that the increase in capacity induced by closed pore‐filling is not accompanied by a decrease in initial coulombic efficiency (ICE), due to the fact that the introduction of closed pores does not increase the contact area between electrode and electrolyte. This work presents novel concepts for the structural design of HC and provides valuable insights into the effective utilization of plateau region in SIBs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3