Model‐Informed Precision Dosing Using Machine Learning for Levothyroxine in General Practice: Development, Validation and Clinical Simulation Trial

Author:

Janssen Daalen Jules M.1ORCID,Doesburg Djoeke2,Hunik Liesbeth3ORCID,Kessel Rogier2,Herngreen Thomas2,Knol Dennis2,Ruys Thony2,van den Bemt Bart J.F.345ORCID,Schers Henk J.3

Affiliation:

1. Department of Neurology, Donders Institute for Brain, Cognition and Behaviour Radboud University Medical Center Nijmegen The Netherlands

2. Amsterdam Data Collective Amsterdam The Netherlands

3. Department of Primary and Community Care Radboud University Medical Center Nijmegen The Netherlands

4. Department of Pharmacy Sint Maartenskliniek Nijmegen The Netherlands

5. Department of Clinical Pharmacy and Toxicology Maastricht University Medical Center+ Maastricht The Netherlands

Abstract

Levothyroxine is one of the most prescribed drugs in the western world. Dosing is challenging due to high‐interindividual differences in effective dosage and the narrow therapeutic window. Model‐informed precision dosing (MIPD) using machine learning could assist general practitioners (GPs), but no such models exist for primary care. Furthermore, introduction of decision‐support algorithms in healthcare is limited due to the substantial gap between developers and clinicians' perspectives. We report the development, validation, and a clinical simulation trial of the first MIPD application for primary care. Stable maintenance dosage of levothyroxine was the model target. The multiclass model generates predictions for individual patients, for different dosing classes. Random forest was trained and tested on a national primary care database (n = 19,004) with a final weighted AUC across dosing options of 0.71, even in subclinical hypothyroidism. TSH, fT4, weight, and age were most predictive. To assess the safety, feasibility, and clinical impact of MIPD for levothyroxine, we performed clinical simulation studies in GPs and compared MIPD to traditional prescription. Fifty‐one GPs selected starting dosages for 20 primary hypothyroidism cases without and then with MIPD 2 weeks later. Overdosage and underdosage were defined as higher and lower than 12.5 μg relative to stable maintenance dosage. MIPD decreased overdosage in number (30.5 to 23.9%, P < 0.01) and magnitude (median 50 to 37.5 μg, P < 0.01) and increased optimal starting dosages (18.3 to 30.2%, P < 0.01). GPs considered lab results more often with MIPD and most would use the model frequently. This study demonstrates the clinical relevance, safety, and effectiveness of MIPD for levothyroxine in primary care.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3