Affiliation:
1. School of Rare Earths University of Science and Technology of China Hefei Anhui 230026 China
2. Ganjiang Innovation Academy Chinese Academy of Sciences Ganzhou Jiangxi 341119 China
3. CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
4. Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Research Center of Rare Earth Materials Haixi Institute Chinese Academy of Sciences Xiamen 361021 China
Abstract
AbstractTransition metal ions, such as Cr3+, Fe3+, and Ni2+, are widely recognized activators for efficient broadband near‐infrared (NIR) phosphors. However, the potential of Mn2+ ions as NIR‐emitting activators is relatively overlooked due to their typically narrowband emission in the visible spectral region and relatively weak absorption. Herein, a heavy Mn2+‐doped Zn1‐xAl2O4: xMn2+ (ZAO: xMn2+) phosphor is presented that exhibits a single NIR emission band peaked at 830 nm with a bandwidth of 135 nm under excitation at 450 nm. Through comprehensive structural and spectral analysis, this NIR band is attributed to the emission originating from Mn2+ ions within the MnO6 octahedra. Importantly, the formation of Mn2+–Mn2+ dimers breaks the spin‐forbidden rule and significantly enhances the transition probability, as supported by the excited state dynamic analysis. Consequently, the optimal ZAO: 0.70Mn2+ sample shows high internal/external photoluminescence quantum yields of 85.8%/36.9%, along with good thermal stability demonstrated by the emission intensity at 423 K retains 60% of that at 298 K. Finally, a prototype NIR pc‐LED device is fabricated by combining ZAO: 0.70Mn2+ phosphor with a 450 nm blue diode chip, generating an NIR output power of 28.84 mW at 100 mA. This study provides novel insights into high‐performance Mn2+‐activated NIR phosphors.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献