Layer‐Dependent Optical Modulation and Field‐Effect‐Transistor in Two‐Dimensional 4H‐SnS2 Layers

Author:

Peheliwa Vincent M.1,Lu Kuan‐Cheng2,Hasibuan Denny Pratama1,Saragih Clara Sinta1,Maria Carlo C. Sta.1ORCID,Chen Yen‐Rui3,Patil Ranjit A.1ORCID,Lai Chien‐Chih1ORCID,Jian Wen‐Bin2ORCID,Wu Maw‐Kuen4ORCID,Ma Yuan‐Ron1ORCID

Affiliation:

1. Department of Physics National Dong Hwa University Hualien 97401 Taiwan

2. Department of Electrophysics National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan

3. Department of Engineering and System Science National Tsing Hua University Hsinchu 30010 Taiwan

4. Institute of Physics Academia Sinica Taipei 11529 Taiwan

Abstract

AbstractTwo–dimensional (2D) 4H‐polytype tin disulfide (SnS2) flakes are synthesized using the chemical vapor transport technique. The weak Van der Waals force between the 2D SnS2 layers offers an easy exfoliation of flakes down to a bilayer of thickness ≈2.02 (±0.1) nm using a mechanical exfoliation technique. The optical and field effect transistor (FET) characteristics of the exfoliated 2D 4H‐SnS2 layers are studied. The exfoliated layers are used to fabricate the ≈13‐layered SnS2 FET. The 4H‐SnS2 exhibits a high on/off ratio of ≈106 and mobility ≈1–4 cm2 V−1 s−1. The low mobility of the 4H‐SnS2 FET devices shows an insulating state concordant with the 2D Motts variable range hopping mechanism at varying temperatures. Moreover, it is found that the optical bandgap of the 2D SnS2 single‐crystal layers is largely widened for the bilayers and tri‐layers. The optical bandgap energies vary in the range of 2.56–1.99 eV. The significant alteration in bandgap energies of ≈0.57 eV offers downscaling of the 2D nanoscale semiconducting devices. Such layer‐sensitive changes in optical transmittance, absorbance, and bandgap energies are reflected in Commission Internationale de L'Eclairage (CIE) chromaticity, showing the distinct color of transmittance through various 2D 4H‐SnS2 layers.

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3