2D materials-based nanoscale tunneling field effect transistors: current developments and future prospects

Author:

Kanungo SayanORCID,Ahmad Gufran,Sahatiya ParikshitORCID,Mukhopadhyay Arnab,Chattopadhyay Sanatan

Abstract

AbstractThe continuously intensifying demand for high-performance and miniaturized semiconductor devices has pushed the aggressive downscaling of field-effect transistors (FETs) design. However, the detrimental short-channel effects and the fundamental limit on the sub-threshold swing (SS) in FET have led to a drastic increase in static and dynamic power consumption. The operational limit of nanoscale transistors motivates the exploration of post-CMOS devices like Tunnel FET (TFET), having steeper SS and immunity toward short channel effects. Thus the field of nanoscale 2D-TFET has gained compelling attention in recent times. The nanoscale TFET, with two-dimensional (2D) semiconductor materials, has shown a significant improvement in terms of higher on-state current and lower sub-threshold swing. In this context, the review presented here has comprehensively covered the gradual development and present state-of-arts in the field of nanoscale 2D-TFET design. The relative merits and demerits of each class of 2D materials are identified, which sheds light on the specific design challenges associated with individual 2D materials. Subsequently, the potential device/material co-optimization strategies for the development of efficient TFET designs are highlighted. Next, the experimental development in 2D-TFET design is discussed, and specific synthesis/fabrication challenges for individual material systems are indicated. Finally, an extensive comparative performance study is presented between the simulated as well as experimentally reported potential 2D materials and state-of-the-art bulk material-based TFETs.

Funder

DST | Science and Engineering Research Board

Birla Institute of Technology and Science, Pilani

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3