Optical Thermometer Based on Efficient Near‐Infrared Dual‐Emission of Cr3+ and Ni2+ in Magnetoplumbite Structure

Author:

Zhang Qianqian12,Li Guogang34,Li Guangzhi5,Liu Dongjie12,Dang Peipei12,Qiu Lei3,Lian Hongzhou12,Molokeev Maxim S.6,Lin Jun12ORCID

Affiliation:

1. State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China

2. School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 China

3. Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 China

4. Zhejiang Institute China University of Geosciences Hangzhou 311305 China

5. College of Pharmacy Jiamusi University Jiamusi Heilongjiang 154007 P. R. China

6. International Research Center of Spectroscopy and Quantum Chemistry — IRC SQC Siberian Federal University Krasnoyarsk 660041 Russia

Abstract

AbstractRecently, an optical thermometer based on the dual‐emitting fluorescent intensity ratio (FIR) in the visible light (VIS) region has achieved great development. However, there is very little progress in thermometers from NIR light. In this work, a novel optical thermometer based on highly efficient NIR dual‐emission of Cr3+ and Ni2+ in LaZnGa11O19 (LZG) with a magnetoplumbite structure is designed. Utilizing energy transfer from Cr3+ to Ni2+, the dual‐emission shows a wide coverage in the 650–1600 nm region, covering the NIR I and II windows, respectively. The as‐reported LZG:0.3Cr3+ and LZG:0.3Cr3+,0.01Ni2+ phosphors can reach internal/external quantum efficiency (IQE/EQE) of 94%/64% and 77%/53%, respectively. The electroluminescence property and potential applications in spectroscopic analysis, night‐vision, and bioimaging of fabricated NIR‐LED with LZG:0.3Cr3+,0.01Ni2+ have also been investigated. In addition, the designed ratiometric optical thermometer responds to wide temperature ranges (100‐175 K, 200–475 K) and shows a maximum relative sensitivity value (Sr) of 2.4% K−1 at 475 K. The optical performance of absorption in the red region and emission in the NIR region enables the LZG:0.3Cr3+,0.01Ni2+ to become a candidate for NIR optical thermometers in biotechnological applications.

Funder

National Science and Technology Major Project

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3