Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor

Author:

Song EnhaiORCID,Chen Meihua,Chen Zitao,Zhou Yayun,Zhou WeijieORCID,Sun Hong-TaoORCID,Yang XianfengORCID,Gan JiulinORCID,Ye ShiORCID,Zhang QinyuanORCID

Abstract

AbstractPhotothermal sensing is crucial for the creation of smart wearable devices. However, the discovery of luminescent materials with suitable dual-wavelength emissions is a great challenge for the construction of stable wearable optical fibre temperature sensors. Benefiting from the Mn2+-Mn2+ superexchange interactions, a dual-wavelength (530/650 nm)-emitting material Li2ZnSiO4:Mn2+ is presented via simple increasing the Mn2+ concentration, wherein the two emission bands have different temperature-dependent emission behaviours, but exhibit quite similar excitation spectra. Density functional theory calculations, coupled with extended X-ray absorption fine structure and electron-diffraction analyses reveal the origins of the two emission bands in this material. A wearable optical temperature sensor is fabricated by incorporating Li2ZnSiO4:Mn2+ in stretchable elastomer-based optical fibres, which can provide thermal-sensitive emissions at dual- wavelengths for stable ratiometric temperature sensing with good precision and repeatability. More importantly, a wearable mask integrated with this stretchable fibre sensor is demonstrated for the detection of physiological thermal changes, showing great potential for use as a wearable health monitor. This study also provides a framework for creating transition-metal-activated luminescence materials.

Funder

National Natural Science Foundation of China

Guangzhou Science and Technology Program key projects

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3