Critical Assessment of the High Carrier Mobility of Bilayer In2O3/IGZO Transistors and the Underlying Mechanisms

Author:

Guo Min1ORCID,Ou Hai1,Xie Dongyu1,Zhu Qiaoji1,Wang Mengye2,Liang Lingyan3,Liu Fengjuan4,Ning Ce4,Cao Hongtao3,Yuan Guangcai4,Lu Xubing5,Liu Chuan1

Affiliation:

1. State Key Laboratory of Optoelectronic Materials and Technologies Guangdong Province Key Laboratory of Display Material and Technology School of Electronics and Information Technology Sun Yat‐sen University Guangzhou 510275 China

2. State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Sun Yat‐sen University Guangzhou 510275 China

3. Laboratory of Advanced Nano Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China

4. BOE Technology Group Co., Ltd Beijing 100176 China

5. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and Institute for Advanced Materials South China Academy of Advanced Optoelectronics South China Normal University Guangzhou 510006 China

Abstract

AbstractHigh‐performance bilayer In2O3/IGZO thin‐film transistors (TFTs) fabricated by pulsed laser deposition are reported. The TFTs exhibit an on/off current ratio of 109, a reversed subthreshold slope (ss) of 0.08 V dec−1, and a high saturation mobility of 47.9 cm2 V−1 s−1. The reliability of the mobility values is critically validated and assessed by four‐probe measurements, the transfer‐length method, and the temperature‐dependence. X‐ray photoelectron spectra are combined with C–V measurements to characterize the interface, and the results show that a two‐dimensional electron gas (2DEG)‐like state accumulates at the In2O3/IGZO interface. However, this state only forms in the subthreshold region and does not cause the high carrier mobility in the region above the threshold. Instead, the enhanced carrier mobility results from the intrinsic high mobility of the In2O3, the smooth surface, and the low‐defect states in the In2O3/IGZO bilayer with a good percolation transport path.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3