Wide‐Bandgap Nickel Oxide with Tunable Acceptor Concentration for Multidimensional Power Devices

Author:

Ma Yunwei1,Qin Yuan1,Porter Matthew1,Spencer Joseph12,Du Zhonghao3,Xiao Ming1,Wang Boyan1,Wang Yifan1,Jacobs Alan G.2,Wang Han4,Tadjer Marko2,Zhang Yuhao1ORCID

Affiliation:

1. Center for Power Electronics Systems (CPES) Virginia Polytechnic Institute and State University Blacksburg VA 24060 USA

2. U.S. Naval Research Laboratory Washington DC 20375 USA

3. Ming Hsieh Department of Electrical Engineering University of Southern California Los Angeles CA 90089 USA

4. Department of Electrical and Electronic Engineering University of Hong Kong Hong Kong SAR 999077 China

Abstract

AbstractMultidimensional power devices can achieve performance beyond conventional limits by deploying charge‐balanced p‐n junctions. A key obstacle to developing such devices in many wide‐bandgap (WBG) and ultra‐wide bandgap (UWBG) semiconductors is the difficulty of native p‐type doping. Here the WBG nickel oxide (NiO) as an alternative p‐type material is investigated. The acceptor concentration (NA) in NiO is modulated by oxygen partial pressure during magnetron sputtering and characterized using a p‐n+ heterojunction diode fabricated on gallium oxide (Ga2O3) substrate. Capacitance and breakdown measurements reveal a tunable NA from < 1018 cm−3 to 2×1018 cm−3 with the practical breakdown field (EB) of 3.8 to 6.3 MV cm−1. This NA range allows for charge balance to n‐type region with reasonable process latitude, and EB is high enough to pair with many WBG and UWBG semiconductors. The extracted NA is then used to design a multidimensional Ga2O3 diode with NiO field‐modulation structure. The diodes fabricated with two different NA both achieve 8000 V breakdown voltage and 4.7 MV cm−1 average electric field. This field is over three times higher than the best report in prior multi‐kilovolt lateral devices. These results show the promise of p‐type NiO for pushing the performance limits of power devices.

Funder

National Science Foundation

Office of Naval Research

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3