Affiliation:
1. Graduate School of Organic Materials Science Yamagata University 3‐4‐16, Jonan Yonezawa Yamagata 992–8510 Japan
2. Research Center for Organic Electronics (ROEL) Yamagata University 3‐4‐16, Jonan Yonezawa Yamagata 992–8510 Japan
3. Piezotech S. A. S. Arkema‐CRRA Pierre‐Benite Cedex 63493 France
4. Arkema K. K. 2‐2‐2 Uchisaiwaicho Chiyoda‐ku Tokyo 100‐0011 Japan
Abstract
AbstractRecently, self‐driven soft robotics based on biomimetics, capable of mimicking biological motion, has attracted attention. Soft actuators using intrinsically soft organic materials are expected to be applied to haptic devices, artificial muscles, and micropumps. Ferroelectric polymers can aid in the realization of such soft actuators. However, actuators using such materials encounter problems in terms of the response frequency to an applied voltage. In this study, a soft actuator is fabricated by a printing process using a unique composite material comprising P(VDF‐TrFE), nano‐carbon material (single‐walled carbon nanotubes (SWCNT) and graphene oxide (GO)), and conductive polymer. To characterize the actuator using a minimum substrate thickness of 25 µm, hysteresis curves in the ferroelectric properties and driving characteristics according to the applied frequency are clarified. In addition, the mechanical life of the actuator under continuous voltage sweep is clarified considering it as a mechanical property. Subsequently, a simple haptics system is constructed using the fabricated actuators, and a human‐sensitive actuator demonstration system is constructed wherein the phase of the sweep frequency is variable.
Subject
Electronic, Optical and Magnetic Materials
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献