Fast Response, High‐Power Tunable Ultrathin Soft Actuator by Functional Piezoelectric Material Composite for Haptic Device Application

Author:

Shouji Yoshinori1,Sekine Tomohito1ORCID,Ito Keita1,Ito Naoya1,Yasuda Tatsuya1,Wang Yi‐Fei2,Takeda Yasunori2,Kumaki Daisuke2,Santos Fabrice Domingues Dos3,Miyabo Atsushi4,Tokito Shizuo1

Affiliation:

1. Graduate School of Organic Materials Science Yamagata University 3‐4‐16, Jonan Yonezawa Yamagata 992–8510 Japan

2. Research Center for Organic Electronics (ROEL) Yamagata University 3‐4‐16, Jonan Yonezawa Yamagata 992–8510 Japan

3. Piezotech S. A. S.  Arkema‐CRRA Pierre‐Benite Cedex 63493 France

4. Arkema K. K.  2‐2‐2 Uchisaiwaicho Chiyoda‐ku Tokyo 100‐0011 Japan

Abstract

AbstractRecently, self‐driven soft robotics based on biomimetics, capable of mimicking biological motion, has attracted attention. Soft actuators using intrinsically soft organic materials are expected to be applied to haptic devices, artificial muscles, and micropumps. Ferroelectric polymers can aid in the realization of such soft actuators. However, actuators using such materials encounter problems in terms of the response frequency to an applied voltage. In this study, a soft actuator is fabricated by a printing process using a unique composite material comprising P(VDF‐TrFE), nano‐carbon material (single‐walled carbon nanotubes (SWCNT) and graphene oxide (GO)), and conductive polymer. To characterize the actuator using a minimum substrate thickness of 25 µm, hysteresis curves in the ferroelectric properties and driving characteristics according to the applied frequency are clarified. In addition, the mechanical life of the actuator under continuous voltage sweep is clarified considering it as a mechanical property. Subsequently, a simple haptics system is constructed using the fabricated actuators, and a human‐sensitive actuator demonstration system is constructed wherein the phase of the sweep frequency is variable.

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3