Advances in smart materials soft actuators on mechanisms, fabrication, materials, and multifaceted applications: A review

Author:

Enyan Michael1ORCID,Bing Zhang1,Amu-Darko Jesse Nii Okai23,Issaka Eliasu3,Otoo Samuel Leumas4,Agyemang Michael Freduah5

Affiliation:

1. School of Mechanical Engineering, Jiangsu University, Zhenjiang, PR China

2. School of Materials Science and Engineering, Jiangsu University, Zhenjiang, PR China

3. School of Environmental Science and Engineering, Jiangsu University, Zhenjiang, PR China

4. College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, PR China

5. Institute of Physical Chemistry, Friedrich-Schiller-Universität, Germany

Abstract

The soft actuators of smart materials have attracted significant attention in recent years due to their unique functions and distinctive characteristics. The actuators are composed of smart materials that can demonstrate substantial alterations in their dimensions, shape, or mechanical characteristics when subjected to external stimuli, including but not limited to temperature, light, electricity, or magnetic fields. These aforementioned characteristics render them highly advantageous for various applications, including tissue engineering, prosthetics, surgical robots, drug delivery, and soft robotics. A deeper understanding of the principles of the actuators is crucial for their development and application expansion. This article provides a comprehensive analysis of soft actuators made from smart materials, explaining their underlying concepts, operational mechanisms, material composition, production techniques, and the diverse range of applications across various fields, including tissue engineering, prosthetics, surgical robotics, drug delivery systems, and the emerging field of soft robotics. This review further highlights the current challenges and prospects to address these problems to enable their ability to revolutionize into a variety of different technical fields.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3