Multifunctional and Electronically Conjugated Triazine Framework for Superior Electro‐Ionic Artificial Muscles

Author:

Garai Mousumi1,Nguyen Van Hiep1,Mahato Manmatha1ORCID,Oh Saewoong1,Saatchi Daniel1,Yoo Hyunjoon1,Ali Syed Sheraz1,Van Lam Do1,Taseer Ashhad Kamal1,Oh Il‐Kwon1ORCID

Affiliation:

1. National Creative Research Initiative for Functionally Antagonistic Nano‐Engineering Department of Mechanical Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea

Abstract

AbstractElectro‐ionic artificial muscles, consisting of a configuration where an electrolyte membrane is flanked by two active electrodes, have emerged as transformative components in the field of soft robotics. Despite this, the current actuation performance falls short for many practical applications, because most existing electrode materials exhibit limitations in terms of their properties. Here, a multifunctional active electrode material is reported for an electro‐ionic artificial muscle, employing a triazine framework that incorporates 6,6′‐Dicyano‐2,2′‐bipyridyl (DCB‐TF). The multifunctional DCB‐TF boasts fully conjugated bonds, facilitating fast electron transfer, high porosity for ion accommodation, a substantial surface area of 1800 m2 g−1 for charge storage, numerous active sites for ion interactions, and complete aromatic rings contributing to stability. The application of DCB‐TF to the active electrodes in the electro‐ionic artificial muscles yields remarkable actuation performance, including a substantial bending displacement of 24 mm at 0.5 V and 0.2 Hz, a rapid response time of 2 s, and outstanding durability sustained over 3.4 million continuous cycles. Consequently, these soft actuators have enabled a dragonfly demonstration as a form of kinetic art.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3