Efficient Ohmic Contact in Monolayer CrX2N4 (X = C, Si) Based Field‐Effect Transistors

Author:

Shu Yu1,Liu Yongqian1,Cui Zhou1,Xiong Rui1,Zhang Yinggan2,Xu Chao3,Zheng Jingying1,Wen Cuilian1,Wu Bo1,Sa Baisheng1ORCID

Affiliation:

1. Multiscale Computational Materials Facility and Key Laboratory of Eco‐materials Advanced Technology College of Materials Science and Engineering Fuzhou University Fuzhou 350108 P. R. China

2. College of Materials Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Xiamen University Xiamen 361005 P. R. China

3. Xiamen Talentmats New Materials Science & Technology Co., Ltd. Xiamen 361015 P. R. China

Abstract

AbstractDeveloping Ohmic contact systems or achieving low contact resistance is significant for high‐performance semiconductor devices. This work comprehensively investigates the interfacial properties of CrX2N4 (X = C, Si) based field‐effect transistors (FETs) with different metal (Ag, Au, Cu, Ni, Pd, Pt, Ti, and graphene) electrodes by using electronic structure calculations and quantum transport simulations. It is highlighted that the stronger interlayer coupling allows CrC2N4 to form an n‐type Ohmic contact with Ti electrode in the vertical direction. Furthermore, the absence of tunneling barrier at the CrC2N4–Ti interface greatly improves the electron injection efficiency. On the other hand, the studied metals form Schottky contact with CrC2N4 at the lateral interface due to Fermi level pinning (FLP) effects. Surprisingly, the strong FLP effects restrict the Schottky barrier heights of CrSi2N4‐metal contacts to a narrow range. Where Ag, Au, Ni, Pd, Pt, Ti electrodes and Ag, Ti electrodes form ideal ohmic contact with CrSi2N4 in the vertical and lateral directions, respectively, while the other metals form quasi‐ohmic contact. Ti exhibits the highest contact performance as the electrode in both CrC2N4 and CrSi2N4 based FETs. The findings may provide fundamental understanding for designing high‐performance and energy‐efficient FETs based on CrX2N4.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3