Impact of Non‐Stoichiometric Phases and Grain Boundaries on the Nanoscale Forming and Switching of HfOx Thin Films

Author:

Schmidt Niclas12ORCID,Kaiser Nico3ORCID,Vogel Tobias3ORCID,Piros Eszter3ORCID,Karthäuser Silvia1ORCID,Waser Rainer14ORCID,Alff Lambert3ORCID,Dittmann Regina1ORCID

Affiliation:

1. Peter Grünberg Institute (PGI‐7) and JARA‐FIT Forschungszentrum Jülich GmbH 52425 Jülich Germany

2. Faculty 1 ‐ Mathematics Computer Science and Natural Science RWTH Aachen University 52062 Aachen Germany

3. Advanced Thin Film Technology Division Institute of Materials Science TU Darmstadt 64287 Darmstadt Germany

4. Institute of Materials in Electrical Engineering and Information Technology (IWE 2) RWTH Aachen University 52056 Aachen Germany

Abstract

AbstractHfO2 is one of the most common memristive materials and it is widely accepted that oxygen vacancies are prerequisite to reduce the forming voltage of the respective memristive devices. Here, a series of six oxygen engineered substoichiometric HfO2 − x thin films with varying oxygen deficiency is investigated by conductive atomic force microscopy (c‐AFM) and the switching process of substoichiometric films is observed on the nanoscale. X‐ray diffractometry (XRD) exhibits a phase transition from stoichiometric, monoclinic HfO2 toward oxygen deficient, rhombohedral HfO1.7. The conductance of HfO2 − x is increasing with increasing oxygen deficiency, which is consistent with the increasing prevalence of the highly conductive rhombohedral phase. Simultaneously, c‐AFM reveals significant local conductivity differences between grains and grain boundaries, regardless of the level of oxygen deficiency. Single grains of highly oxygen deficient samples are formed at significant lower voltages. The mean forming voltage is reduced from (7.0 ± 0.6) V for HfO2 to (1.9 ± 0.8) V for HfO1.7. Resistive switching on the nanoscale is established for single grains for the highest deficient thin film samples. The final resistance state is thereby dependent on the initial conductivity of the grains. These studies offer valuable insights into the switching behavior of memristive polycrystalline HfO2.

Funder

Deutsche Forschungsgemeinschaft

Electronic Components and Systems for European Leadership

Horizon 2020 Framework Programme

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3