Electrical Manipulation of Antiferromagnetic Random‐Access Memory Device by the Interplay of Spin‐Orbit Torque and Spin‐Transfer Torque

Author:

Du Ao1,Zhu Daoqian1,Peng Zhiyang1,Guo Zongxia1,Wang Min1,Shi Kewen1,Cao Kaihua1,Zhao Chao1,Zhao Weisheng1ORCID

Affiliation:

1. Fert Beijing Institute School of Integrated Circuit Science and Engineering Beihang University Beijing 100191 China

Abstract

AbstractAntiferromagnets (AFM) hold significant promise as ideal candidates for high‐density and ultrafast memory applications. Electrical manipulation of exchange bias (EB) has emerged as an effective solution to integrate AFMs into magnetic memories as active elements. In particular, spin‐orbit torque antiferromagnetic random‐access memory (SOT‐ARAM) is recently been demonstrated by using an AFM/FM hybrid free layer, which can simultaneously satisfy field‐free switching and good device scalability. However, the switching current density of the exchange bias in SOT‐ARAM devices is still high, and novel functionalities are exploited in this device scheme. In this study, the all‐electrical manipulation of the ARAM devices through the interplay of SOT and spin‐transfer torque (STT) is reported, both in three‐terminal and two‐terminal configurations. The SOT current density achieves a 40% reduction thanks to the incorporation of the STT current. Macrospin simulations are performed to illustrate the underlying mechanism. Further, a majority gate that can be decomposed into reconfigurable AND/OR functionalities in a single ARAM device is demonstrated, with an operation speed as fast as 2 ns. The results can advance the development of high‐performance memories and in‐memory computing.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National Postdoctoral Program for Innovative Talents

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3