High‐Throughput Exploration of Phase Evolution in (Pb1−XBaX)ZrO3 Thin Films

Author:

Su Peipei12,Ren Chuanlai2,Zeng Lingping12,An Feng2,Li Minghuan1,Chen Qianxin12,Zhang Yuan2,Tan Yangchun12,Wang Jinbin1,Zhong Xiangli1,Huang Mingqiang2,Zhong Gaokuo2ORCID

Affiliation:

1. National‐Provincial Laboratory of Special Function Thin Film Materials School of Materials Science and Engineering Xiangtan University Xiangtan Hunan 411105 China

2. Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China

Abstract

AbstractAntiferroelectric thin films hold significant potential for bringing novel physics phenomena and fascinating properties. Their applications are often intertwined with the antiferroelectric‐ferroelectric phase transition, which is contingent on the chemical compositions of the constituent material. Nevertheless, the prevailing trial‐and‐error‐based research methodology is ill‐suited for the exploration of the relationship between chemical compositions and the antiferroelectric‐ferroelectric phase transition. To address this challenge, a high‐throughput synthesis strategy for antiferroelectric thin films is presented, which is enabled by an advanced high‐throughput pulsed laser deposition technology. The effectiveness of this synthesis strategy using (Pb1−XBaX)ZrO3 and achieving precise control over the parameter X is showcased. This approach allows for the deposition of (Pb1−XBaX)ZrO3 thin films encompassing nine chemical compositions ranging from X = 0 to X = 0.08. Based on this high‐throughput method, the composition that corresponds to the phase transition of (Pb1−XBaX)ZrO3, falling within the range of X = 0.04 to X = 0.06 is pinpointed. Furthermore, a temperature‐dependent correlation between the phase transition and chemical composition is established. This work not only presents a practical routine for establishing a comprehensive map of material chemical composition in relation to the properties of antiferroelectric thin films but also offers a method for the high‐throughput exploration of complex oxide thin films.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Program

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3