Adaptive neural tracking control for flexible joint robot including hydraulic actuator dynamics with disturbance observer

Author:

Phan Van Du1ORCID,Vo Cong Phat2ORCID,Ahn Kyoung Kwan3ORCID

Affiliation:

1. School of Engineering and Technology Vinh University Vinh Vietnam

2. Autonomous Robot 24Hours 7Days Co., Ltd Gyeonggi‐do South Korea

3. School of Mechanical Engineering University of Ulsan Ulsan South Korea

Abstract

AbstractIn this paper, a disturbance observer‐based adaptive neural backstepping integral sliding mode control (BISMC) is developed for a flexible joint robot (FJR) with the integration of an adjustable stiffness rotary actuator (ASRA). This system suffers from unknown system dynamics, external disturbance, and the influence of variable stiffness, which is a challenge for achieving precision tracking performance. Considering the lumped disturbances in FJR generated by the hydraulic system and the stiffness modulation of the ASRA, we investigate the structural dynamics nonlinear model of the FJR system, including hydraulic actuator dynamics. While other linear control strategies are applied for the FJR, the proposed controller uses BISMC, neural networks (NN), and nonlinear disturbance observers to deal with the disadvantages mentioned above. Radial basis function neural networks (RBFNN) are designed to tackle unknown nonlinear functions, and the disturbance observers are introduced to compensate for the influence of the variable stiffness, disturbance, and the approximation error caused by NN. Simulations and experiments are independently implemented to demonstrate the effectiveness and feasibility of the proposed controller. Results exhibit that the integral absolute error‐index is reduced by 20.4% when the proposed method is deployed for the experiment with a multistep trajectory.

Funder

Ministry of Education

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3