Affiliation:
1. Corporate Research Taiwan Semiconductor Manufacturing Company 168, Park Ave. II Hsinchu 300 Taiwan
2. Department of Electrophysics National Yang Ming Chiao Tung University 1001 University Raod Hsinchu 300 Taiwan
3. Department of Electrical Engineering Stanford University 450 Jane Stanford Way Stanford CA CA 94305 USA
4. Corporate Research Taiwan Semiconductor Manufacturing Company 2851 Junction Ave. San Jose CA CA 95134 USA
Abstract
AbstractSemiconducting single‐walled carbon nanotube (CNT) is a promising candidate as a channel material for advanced logic transistors, attributed to the ultra‐thin 1‐nm cylindrical geometry, high mobility, and high carrier injection velocity. However, the presence of undesired CNT bundles in the CNT arrays for wafer‐scale device fabrication, even when utilizing the state‐of‐the‐art dimension‐limited self‐alignment (DLSA) method, poses challenges. These CNT bundles degrade the transistor gate's efficiency in controlling the flow of charge carriers in the CNT channel, leading to pronounced device‐to‐device variability. Here, a novel method is introduced to alleviate bundling in CNT arrays assembled via DLSA, by involving small molecule additive to screen the attractive van der Waals force between neighboring CNTs during the DLSA process, resulting in over 50% reduction in CNT bundling. Furthermore, a pioneering methodology for quantifying CNT bundles is presented and employed experimentally to assess bundles in dense CNT arrays assembled by DLSA using transmission electron microscopy. Both experimental data and molecular dynamics simulation reveal that CNT bundling originates from van der Waals attraction between CNTs, and the disturbed liquid‐liquid interface by accumulating excess polar molecules. These findings illuminate new pathways for realizing dense, bundle‐free CNT arrays.
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献