Annealing‐Induced Chemical Interaction at the Ag/In2O3:H Interface as Revealed by In Situ Photoelectron Spectroscopy

Author:

Xiao Ting1ORCID,Erfurt Darja2,Félix Roberto1,Liao Xiaxia13,Frisch Johannes1,Abou‐Ras Daniel4,Mazzio Katherine A.56,Wilks Regan G.17,Schlatmann Rutger28,Bär Marcus17910

Affiliation:

1. Department of Interface Design Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH (HZB) Albert‐Einstein‐Str. 15 12489 Berlin Germany

2. PVcomB Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH (HZB) Schwarzschildstraße 3 12489 Berlin Germany

3. School of Physics and Materials Science Nanchang University Nanchang 330031 P. R. China

4. Department of Structure and Dynamics of Energy Materials Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH (HZB) Hahn‐Meitner‐Platz 1 14109 Berlin Germany

5. Department of Chemistry Humboldt University of Berlin Brook‐Taylor‐Str. 2 12489 Berlin Germany

6. Joint Research Group Operando Battery Analysis Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH Hahn‐Meitner‐Platz 1 14109 Berlin Germany

7. Energy Materials In‐situ Laboratory Berlin (EMIL) Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH Albert‐Einstein‐Str. 15 12489 Berlin Germany

8. Hochschule für Technik und Wirtschaft Berlin Treskowallee 8 10318 Berlin Germany

9. Department of X‐ray Spectroscopy at Interfaces of Thin Films, Helmholtz‐Institute Erlangen‐Nürnberg for Renewable Energy (HI ERN) Albert‐Einstein‐Str. 15 12489 Berlin Germany

10. Department of Chemistry and Pharmacy Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Egerlandstr. 3 91058 Erlangen Germany

Abstract

AbstractHydrogen‐doped In2O3 (In2O3:H) is highly conductive while maintaining extraordinary transparency, thus making it a very attractive material for applications in optoelectronic devices such as (multijunction) solar cells or light‐emitting devices. However, the corresponding metal/In2O3:H contacts may exhibit undesirably high resistances, significantly deteriorating device performance. To gain insight into the underlying efficiency‐limiting mechanism, hard X‐ray photoelectron spectroscopy is employed to in‐situ monitor annealing‐induced changes in the chemical structure of the Ag/In2O3:H interface system that is further complemented by ex‐situ electron microscopy analyses and contact resistance measurements. The observed evolution of the Ag‐ and In‐related photoelectron line intensities can be explained by significant intermixing across the Ag/In2O3:H interface. The corresponding lineshape broadening of the Ag 3d spectra is attributed to the formation of Ag2O and AgO, which becomes significant at temperatures above approximately 160 °C. However, after annealing to 300 °C, instead of the formation of an insulating AgOx interfacial layer, it is found i) In to be rather homogeneously distributed in the complete Ag/In2O3:H stack, ii) Ag diffusing into the In2O3:H, and iii) an improvement of the contact resistance rather than its often‐reported deterioration.

Funder

Robert Bosch Stiftung

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3