Interfacial Degradation and Pattern Evolution of Exfoliated Graphene by Cyclic Mechanical Loading

Author:

Guo Yongjie1,Yu Senjiang1ORCID,Lu Chenxi1,Hu Liang1,Su Weitao2,Li Lingwei1

Affiliation:

1. Key Laboratory of Novel Materials for Sensor of Zhejiang Province College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310018 P. R. China

2. School of Sciences Hangzhou Dianzi University Hangzhou 310018 P. R. China

Abstract

AbstractThe interfacial interactions between 2D materials and polymer substrates receive increasing interest due to the surge of flexible electronics, multifunctional coatings, and nanocomposites. Although the strain effect on electrical, optical, and mechanical properties of 2D materials is extensively investigated, understanding the interfacial mechanics of 2D material‐polymer systems by dynamic loading is still a challenge. Here, the interfacial degradation and pattern evolution of mechanically exfoliated single‐ and few‐layer graphene on polydimethylsiloxane (PDMS) substrates by cyclic mechanical loading, are reported. It is found that the tensile strain leads to interfacial slippage between graphene and PDMS, whereas the compressive strain can be transferred to graphene with a transfer efficiency above 80%. Through cyclic loading, the graphene surface is seriously deformed by formation of multiple instability patterns including wrinkles and cracks. The morphological characteristic and evolution mechanism of the wrinkles and cracks are analyzed and discussed in detail. The interfacial adhesion energy is evaluated by wrinkle profiles and it decreases from ≈23 to ≈2 mJ m−2 as the cycle number increases. This work can promote better understanding of the interfacial effect of 2D materials on polymer substrates and controllable fabrication of various wrinkled or crumpled surfaces of 2D functional materials by cyclic mechanical loading.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3