Improving the Stability, Selectivity, and Cell Voltage of a Bipolar Membrane Zero‐Gap Electrolyzer for Low‐Loss CO2 Reduction

Author:

Siritanaratkul Bhavin1ORCID,Sharma Preetam K.2,Yu Eileen H.2,Cowan Alexander J.1ORCID

Affiliation:

1. Stephenson Institute for Renewable Energy and the Department of Chemistry University of Liverpool Liverpool L69 7ZF UK

2. Department of Chemical Engineering Loughborough University Loughborough LE11 3TU UK

Abstract

AbstractElectrolyzers for CO2 reduction containing bipolar membranes (BPM) are promising due to low loss of CO2 as carbonates and low product crossover, but improvements in product selectivity, stability, and cell voltage are required. In particular, direct contact with the acidic cation exchange layer leads to high levels of H2 evolution with many common cathode catalysts. Here, Co phthalocyanine (CoPc) is reported as a suitable catalyst for a zero‐gap BPM device, reaching 53% Faradaic efficiency to CO at 100 mA cm−2 using only pure water and CO2 as the input feeds. It is also shown that the cell voltage can be lowered by constructing a customized BPM using TiO2 water dissociation catalyst, however this is at the cost of decreased selectivity. Switching the pure‐water anolyte to KOH improved both the cell voltage and CO selectivity (62% at 200 mA cm−2), but cation crossover could cause complications. The results demonstrate viable strategies for improving a BPM CO2 electrolyzer toward practical‐scale CO2‐to‐chemicals conversion.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3