Review on high‐performance polymeric bipolar membrane design and novel electrochemical applications

Author:

Yan Junying1,Yu Weisheng1,Wang Zihao1,Wu Liang1,Wang Yaoming1,Xu Tongwen1ORCID

Affiliation:

1. Key Laboratory of Precision and Intelligent Chemistry Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui People's Republic of China

Abstract

AbstractElectrochemical devices allow the conversion and storage of renewable energy into high‐value chemicals to mitigate carbon emissions, such as hydrogen production by water electrolysis, carbon dioxide reduction, and the electrochemical synthesis of ammonia. Independent regulation of the electrode pH environment is essential for optimizing the electrode reaction kinetics and enriching the catalyst species. The in situ water dissociation (WD, ) in bipolar membranes (BPMs) offers the possibility of realizing this pH adjustment. Here, the design principles of high‐performance polymeric BPMs in electrochemical device applications are presented by analyzing and connecting WD principles and current–voltage curves. The structure–transport property relationships and membrane durability, including the chemical and mechanical stability of the anion‐ and cation‐exchange layers as well as the integrality of the interfacial junction, are systematically discussed. The advantages of BPMs in new electrochemical devices and major challenges to break through are also highlighted. The improved ion and water transport in the membrane layer and the minimized WD overpotential and ohmic loss at high current densities are expected to facilitate the promotion of BPMs from conventional chemical production to novel electrochemical applications.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Anhui Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3