Reliability Engineering of High‐Mobility IGZO Transistors via Gate Insulator Heterostructures Grown by Atomic Layer Deposition

Author:

Kim Yoon‐Seo1,Hwang Taewon1,Oh Hye‐Jin1,Park Joon Seok2,Park Jin‐Seong1ORCID

Affiliation:

1. Division of Materials Science and Engineering Hanyang University 222, Wangsimni‐ro Seongdong‐gu Seoul 04763 Republic of Korea

2. R&D center Samsung Display, Inc. 1, Samsung‐ro, Giheung‐gu Yongin‐si Republic of Korea

Abstract

AbstractThe reliability of oxide‐semiconductor (OS) thin‐film transistors (TFTs) is significantly influenced by the gate insulator (GI). During electrical bias stress, the defect sites near the semiconductor/GI interface and/or within the GI may trap electrons, which makes the threshold voltage (Vth) shift toward positive values. On the other hand, carbon (C) or hydrogen (H) atoms may diffuse from the GI into the active layer, and act as shallow donors, which induce negative Vth shifts (ΔVth). In this paper, an in situ atomic layer deposition (ALD)‐based GI heterostructure is introduced, which consists of a stack of two complementary materials, namely Al2O3 and SiO2. Here, a competition occurs between electron trapping in Al2O3 (positive ΔVth) and carrier generation from H atoms in SiO2 (negative ΔVth) which allows the achievement of nearly zero ΔVth under positive bias temperature stress (PBTS). This strategy is successfully applied to a high‐mobility (>50 cm2 Vs−1) ALD‐based indium‐gallium‐zinc oxide (IGZO) device, resulting in a net ∆Vth of −0.02 V under PBTS and drain current variation (∆ID) of +0.49% under constant current stress (CCS). The application of an in situ ALD process thus offers valuable insights to resolve the mobility versus reliability trade‐off in high‐performance oxide TFTs.

Funder

Hanyang University

Ministry of Trade, Industry and Energy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3