Affiliation:
1. Department of Physics, Faculty of Sciences Moulay Ismail University of Meknès Meknes Morocco
2. Department of Physics, Polydisciplinary Faculty University of Sultan Moulay Slimane Beni Mellal Morocco
Abstract
AbstractIn this study, the water convection flow within a right‐angled, inclined, and isosceles triangle enclosure for various inclination angles was numerically analyzed using the lattice Boltzmann method with the multirelaxation time model. On the hypotenuse side, the enclosure is thermally insulated, while the left and horizontal walls are kept, respectively, at cold and hot temperatures. This study was conducted to show the effects of two key parameters, the tilt angle and the Rayleigh number , whose changes span from to and to , respectively. The effect of these variables is presented in terms of streamlines, isotherms, velocity profiles, temperature plots, and the average Nusselt number. Furthermore, the impact of the size of a hot square obstruction inside the cavity on the isotherms and streamlines has been investigated. The findings demonstrate that the rate of heat transport is enhanced as the Rayleigh number increases. This result is in good agreement with earlier research without tilting the cavity. Depending on the Rayleigh number, the tilt angle has a significant effect on the rate of heat transmission.
Subject
Fluid Flow and Transfer Processes,Condensed Matter Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献