Thermal management optimization of natural convection in a triangular chamber: Role of heating positions and ternary hybrid nanofluid

Author:

Ighris Youness1ORCID,Qaffou Mohsine1,Baliti Jamal1ORCID,Elguennouni Youssef2ORCID,Hssikou Mohamed1ORCID

Affiliation:

1. Research Laboratory in Physics and Sciences for Engineers (LRPSI), Polydisciplinary Faculty, University of Sultan Moulay Slimane 1 , Beni Mellal, Morocco

2. Faculty of Sciences, Moulay Ismail University of Meknes 2 , Meknes, Morocco

Abstract

In this paper, we used the multi-relaxation time lattice Boltzmann method to investigate natural convection in a triangular-shaped cavity filled with a tri-hybrid nanofluid. The cavity is partially heated by a chip of fixed size (l=L/2), the position of which varies on the left and bottom walls in order to find the optimal positions. The inclined side is maintained at a cool temperature, while the other parts are adiabatic. A detailed analysis is carried out on the impact of four essential parameters on the optimization of heat transfer: the Rayleigh number, ranging between Ra = 103 and Ra = 106; the partial heating position, showing the cavity in six different configurations; the fluid type, including pure water, nanofluid, hybrid nanofluid, and tri-hybrid nanofluid; and finally, the volume concentration of the nanoparticles for three values, ϕ = 0%, 3%, and 6%. Results are presented in the form of isotherms, streamlines, temperature and velocity profiles, and the mean Nusselt number values. As the results show, the position of the partial heater plays a crucial role, influencing natural convection heat transfer significantly in certain positions at all values of the Rayleigh number. The type of fluid has a remarkable impact on the amplification of natural convection at large values of the Rayleigh number, where the buoyancy force becomes strong. Notably, the use of tri-hybrid nanofluid shows a clear improvement in natural convection heat transfer. Furthermore, a substantial increase in thermal transmittance is observed with an increasing nanoparticle volume fraction. The validation results agree well with both numerical results and experimental data published in the literature.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3