Upgrading CO2 into acetate on Bi2O3@carbon felt integrated electrode via coupling electrocatalysis with microbial synthesis

Author:

Liu Xiaojing12,Zhang Kang13,Sun Yidan14,Zhang Shukang12,Qiu Zhenyu14,Song Tianshun13,Xie Jingjing13,Wu Yuping12,Chen Yuhui12ORCID

Affiliation:

1. State Key Laboratory of Materials‐Oriented Chemical Engineering Nanjing Tech University Nanjing China

2. School of Energy Science and Engineering Nanjing Tech University Nanjing China

3. College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China

4. College of Chemical Engineering Nanjing Tech University Nanjing China

Abstract

AbstractUpgrading of atmospheric CO2 into high‐value‐added acetate using renewable electricity via electrocatalysis solely remains a great challenge. Here, inspired by microbial synthesis via biocatalysts, we present a coupled system to produce acetate from CO2 by bridging inorganic electrocatalysis with microbial synthesis through formate intermediates. A 3D Bi2O3@CF integrated electrode with an ice‐sugar gourd shape was fabricated via a straightforward hydrothermal synthesis strategy, wherein Bi2O3 microspheres were decorated on carbon fibers. This ice‐sugar gourd‐shaped architecture endows electrodes with multiple structural advantages, including synergistic contribution, high mass transport capability, high structural stability, and large surface area. Consequently, the resultant Bi2O3@CF exhibited a maximum Faradic efficiency of 92.4% at −1.23 V versus Ag/AgCl for formate generation in 0.5 M KHCO3, exceeding that of Bi2O3/CF prepared using a conventional electrode preparation strategy. Benefiting from the high formate selectivity, unique architecture, and good biocompatibility, the Bi2O3@CF electrode attached with enriched CO2‐fixing electroautotrophs served as a biocathode. As a result, a considerable acetate yield rate of 0.269 ± 0.009 g L−1 day−1 (a total acetate yield of 3.77 ± 0.12 g L−1 during 14‐day operation) was achieved in the electrochemical–microbial system equipped with Bi2O3@CF.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3