Tuning CO2 Electrocatalytic Reduction Path for High Performance of Li‐CO2 Battery

Author:

Wang Zhen1,Deng Li2,Yang Xue‐Rui3,Lin Jin‐Xia2,Cao De‐Quan1,Liu Jun‐Ke1,Tong Zhen1,Zhang Jing1,Bai Gao‐Yang1,Luo Yu‐Xi2,Yin Zu‐Wei1,Zhou Yao1,Li Juntao1ORCID

Affiliation:

1. College of Energy Xiamen University Xiamen 361102 P. R. China

2. College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China

3. School of Physics and Materials Science Nanchang University Nanchang 330031 P. R. China

Abstract

AbstractThe production of Li2CO3/C through CO2 reduction reaction in nonaqueous systems is a complex four‐electron, multi‐step process, and the short existence time of intermediate monomers is not conducive to observation, which causes great difficulties in clarifying and regulating the CO2 reduction path. Herein, ferrocene (Fc) as a functional additive into the electrolyte can stabilize the discharge intermediates and favor the occurrence of the two‐electron reaction path during CO2RR, which leads to more stable operation of the Li‐CO2 battery; with the assistance of Fc, the CO2 reduction pathway in Li‐CO2 battery is also clarified. Theoretical calculation analysis combined with experimental characterization observation confirms that Fc can shorten the CO2 reduction distance through interaction with CO2 and affecting the solvent environment around Li+, stabilize intermediate products to clarify the discharge path. The existence time of intermediates and discharge depth of the battery are key factors affecting the CO2 reduction pathway. The Li2C2O4 formed by CO2 reduction through the 2‐electron pathway is more favorable for the reversible operation of the Li‐CO2 battery than Li2CO3/C through the 4‐electron pathway. This work provides inspiration for clarifying the reaction mechanism and regulating the CO2 reduction pathway to improve the electrochemical performance of Li‐CO2 battery in the future.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3